

Certificate

of Participation

Paper ID: 106

Authors: **Manish Kumar, Vijay Kumar Singh, Nitesh Kumar, Nitin Anand,
Rakesh Kundu, Pardeep Singh**

This is to certify that

Nitesh Kumar

Dr./Mr./Ms.....

of..... **L.N. Mishra College of Business Management, Muzaffarpur, Bihar**..... has presented a paper
entitled..... **IoT Enabled Healthcare System for Remote & Near Patient Monitoring**.....

..... in the
4th International Conference on Current Research in Engineering and Technology (ICCRET 2025) organized by the
Department of Computer Science and Engineering - Artificial Intelligence and Department of Computer Science and
Engineering, Brainware University, Barasat, Kolkata during 21-22 February, 2025.

Shivnath Ghosh

Dr. Shivnath Ghosh
General Chair

Mili Sarkar

Dr. Mili Sarkar
Chair, IEEE CAS
Kolkata Section

Sankar Gangopadhyay

Dr. Sankar Gangopadhyay
Vice Chancellor
Brainware University

IoT Enabled Healthcare System for Remote & Near Patient Monitoring

Dr. Manish Kumar¹, Dr. Vijay Kumar Singh², Nitesh Kumar^{3*}, Nitin Anand⁴,
Rakesh Kundu⁵, Pardeep Singh⁶

¹*Director, L.N. Mishra College of Business Management, Muzaffarpur, Bihar, India*
Email: manishsirhere@gmail.com

²*Assistant Professor, Department of Information Technology*
L.N. Mishra College of Business Management, Muzaffarpur, Bihar, India
Email id: vijaybakhya@gmail.com

³*Assistant Professor, Department of Information Technology*
L.N. Mishra College of Business Management, Muzaffarpur, Bihar, India
Email: rickyengineer@gmail.com

⁴*Research Scholar, Department of Computer Science and Engineering*
National Institute of Technology, Manipur, India
Email: nitin1036@gmail.com

⁵*Block Level Staff, Department of Technical Education, Training and Skill Development*
Government of West Bengal, India
Email: rakeshkundu80@gmail.com

⁶*Assistant Professor, Department of Computer Science and Engineering*
Guru Tegh Bahadur 4th Centenary Engineering College, New Delhi, India
Email id: singh.pardeep@gmail.com

Abstract

A vast amount of data may be gathered, saved, and examined for data-analytics procedures thanks to the Internet of Things devices' simple ability to collect and send data with other devices via the cloud. By detecting physiological indicators like systolic and diastolic blood pressure, heart rate, and body temperature, this paper aims to improve the quality of life for patients by providing real-time visibility into their status. The main concept is to provide care to patients by continuously monitoring their vital signs, such as blood pressure, pulse rate, and body temperature, without requiring them to transfer between facilities for ongoing health monitoring. Data collected by the temperature and blood pressure sensors is processed and saved in the cloud, where the patient's careers can view it from anywhere and react appropriately to any alerts.

I. Introduction

The populace of the planet is rising colossally. The towns that have more inhabitants confront an uncommon urban life burden[1]. Whereas restorative offices and administrations are extended in cities each day, there's still not sufficient. The colossal weight on healthcare administration in towns has driven to specialized developments that offer the most excellent arrangements for the booming issues[2]. Farther wellbeing care is portion of our life with the rising numbers of individuals with therapeutic challenges[3]. We have seen an increment of intrigued of wearable sensors in later a long time and these gadgets are accessible on the showcase at a lower fetched in individual healthcare and mindfulness of operation[4]. For the information collection, and continually track for patient's security, analysts considered application

for these progressed instruments for restorative employments[5].

(i) Security- There appeared to be solid agreement on the ought to give reasonable assurances for companies creating IoT gadgets[6]. What constitutes satisfactory security for a particular framework will of course be subordinate on a number of variables like information securing volume and affectability and security helplessness redress costs[7]. Commission staff encourage organizations to take after best hones, counting those recorded underneath, highlighted by workshop members[8].

(ii) Minimization of Data- The thought of lessening information relates to the reality that companies can limit and arrange of the information they collect when they now not require them[9]. In spite of the

fact that a few members communicated concern that require for information minimization seem ruin creative information utilization, the staff concurred that the preparing and maintenance of client information by businesses ought to be decently limited[10].

II. System Architecture

There are four layers of the protocol, as example (i) physical layer (ii) networking layer (iii) middleware layer (iv) application layer. Secondly, physical layer consist sensor and transmitter embedded equipment[11]. The network layer gives sensor for flag transmission for clouds when work handling of center layer information accessibility of cloud to create concern especially[12]. Eventually analyzed, diagnostics carried out for application layer. The figure 1 appears the framework design, which concentrates on close as well as patients who are in inaccessible area[13]. Typically IoT conceivable as it were due to everything for web. A wifi module is associated to the framework, based on the micro controller, processor the information will be exchanged to site where we are able screen the patients wellbeing in site through farther area[14-20].

(i) Transmission and processing of data- Wearable screens for electrocardiography (ECG), temperature, electromyography (EMG), muscle work, respiratory rate, sweating and blood glucose level should too be given for the quiet[21]. Infections like fever, rhythmia, neuromuscular variation from the norm, corpulence, blood weight, diabilities utilized in this programs[22]. In order to obtain precise estimations, the region sensor is easily positioned over the skin contact on various places of the body [23].

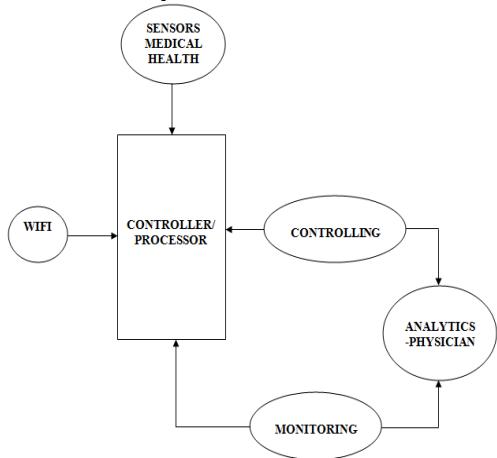


Fig 1: System Architecture

(ii) Processing of Cloudlet- The shrewd phones presently have bounty of progressed highlights so that LTE and WiFi both are accessible. These keen phones are utilized for system as concentrateurs. Concentrator information will send for cloud capacity[24]. These data would be exceptionally valuable in the event that handled, whether restorative specialists or analytics ask it. Cloudlet is utilized for little handling unit store the information. Whereso should meet satisfactory neighborhood assets. This sorts of offer assistance perform imperative capacities subtle elements of restorative patients. Once information are putting away in Cloudlet to permit for more noteworthy clear exactness amid information investigation[25].

(iii) Analytics and forecast- The information preparing is additionally an critical action as restorative information sets are wealthy in amounts. This inquire about combines sensor parameters and clinical information with machine learning calculations[26]. Increment the exactness of restorative diagnostics can inspected a longer time. Wearable sensor information are subject for pattern acknowledgment and the method of machine learning. It has to Machine learning advance assist oversee heterogeneous, ceaselessly advance with sensor information[27]. Such sorts of calculation oversee the information values, gushing information and information of different measurements and semanticity, which are as a rule missing, as the nature of sensors continuously changes[28].

III. Proposed System

One of the most promising areas for IoT innovation is health and wellbeing management. Better health administration results from more practical and optimal treatment when patients are observed remotely. Similarly, patients are empowered to take an active role in managing and influencing their therapy by gaining a better understanding of their actual conditions. The suggested approach offers the notion of using the newest technological advancement, the Internet of Things, to solve medical issues.



Fig 2: Monitoring and alert system

Figure 2, shows the block diagram for an IoT-based smart real-time health care monitoring and alarm system. It introduces the Internet of Things-based smart medical care framework designed to provide everyone with high-quality healthcare. Important patient metrics including blood pressure (BP) and temperature can be gradually measured with this suggested approach. Fig. 2 shows the process for the suggested system. The following explanation has been provided:

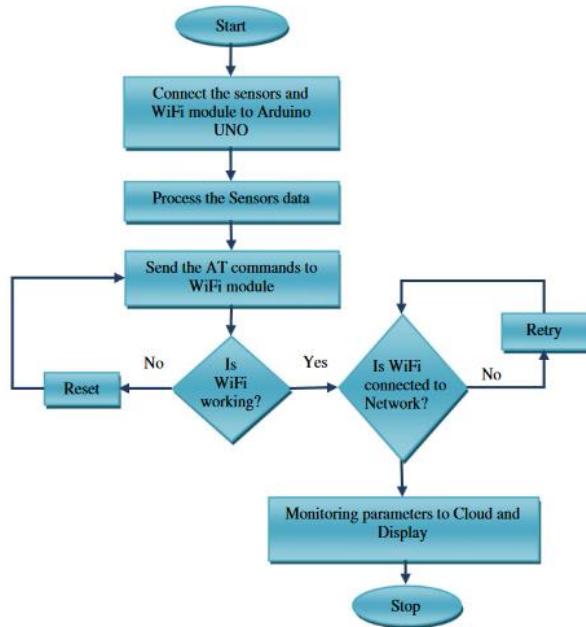


Fig 3: Flowdiagram IoT Based Healthcare System for Patient Monitoring

- Step 1 First, attach the temperature and blood pressure sensors to the Arduino UNO.
- Step 2: Use Arduino programming to process the sensor data using an Arduino UNO.
- Step 3: Connect the WiFi module to the TCP network.
- Step 4: Verify if the WiFi module is linked to the network.
- Step 5 Send the sensor data to the cloud as soon as the WiFi connects. If not, proceed to step 3.
- Step 6 The phone's Android app can be used to view the stored data.
- Step 7 Every time the data drops or rises above the predetermined value, a tweet alert is delivered.

IV. Implementation of Hardware

The pulse and temperature sensors are used independently to assess the health parameters, such as blood pressure, heart rate, and temperature level. Through interfaces, the collected medical data is saved in the Arduino UNO. The ESP8266 is then notified of this information. The cloud also receives the transmitted data. Here, the ATmega328's UART pins 0 and 1 are linked to the pulse sensor. The Arduino UNO's pin 4 is connected to the temperature sensor, and the Esp8266 WiFi module's Tx and Rx sequential pins are connected to the Arduino UNO's pins 8 and 9. Fig. 4 shows the configuration of the suggested system. In Figure 5, the measured values are displayed. Using the ESP8266 WiFi shield, the measured data was sent to ThingSpeak, an IoT-based cloud management system. The transferred data is kept in a graphical style because the ThingSpeak web service collaborates with MATH. Figure 6 displays the Systolic (SC), Diastolic (DC), Pulse Rate (PR), and Temperature (T) values that are recorded on ThingSpeak. The following parameters are derived from the above figure's study.

Fig 4: Real time implementation

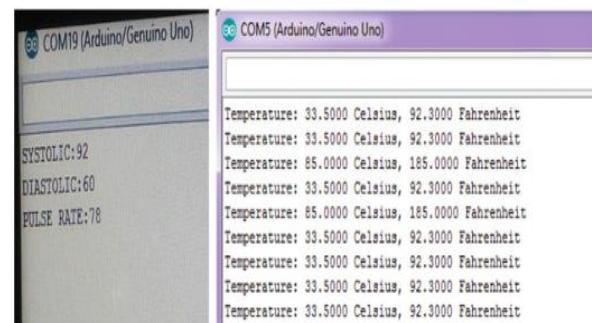


Fig 5: Pressure and temperature senor values on serial monitor

Fig 6: SC, DC, PR and T values on ThingSpeak

Fig 7: Systolic and diastolic, body temperature and pulse values

DC: 60 mm Hg, SC: 92 mm Hg.

T: 33 °C, PR: 78 bpm.

The mobile application might be used to get the data that was saved in the ThingSpeak cloud administration. By providing the channel ID, it enables users to easily see their ThingSpeak commands. It can be found in Fig. 6. It displays the various project titles. It obtains the values from the thing talk server and presents the stored (sensors) values in a graphical way when the paper title is clicked. Figure 7 displays the body temperature, pulse, diastolic, and systolic readings from the Thing View app. The psychiatrist determined the

sickness and then assessed the patient's condition based on the principles of the facts examined. The primary benefit of this approach is that, with the availability of the Internet, IoT health devices, and Android mobile devices, it is feasible to access a specific person's critical statistics from any location in the globe.

V. Conclusion

In the area of health surveillance, the Internet of Things is starting to look like a viable answer. employing remote patient monitoring to monitor a person's health and assist a physician in spotting illness symptoms. An Internet of Things-based patient monitoring system has been suggested in this paper. Here, the patient's health metrics have been tracked using a variety of sensor kinds. According to their capabilities, they detect the interior temperature and heart rate independently. The data is then stored and processed further with the help of a microcontroller. A medical server receives these sensor values after they have been wirelessly communicated. An authorised IoT framework smartphone then receives these data. The psychiatrist determined the ailment and then assessed the patient's condition based on the principles of the facts he had read. The fundamental parameters can be seen in a pervasive strategy, and this framework can be realised in the future with a negligible advancement board that quickly fits and plays IoT.

References

1. Sullivan, H.T., Sahasrabudhe, S.: Envisioning inclusive futures: technology-based assistive sensory and action substitution. *Futur. J.* 87, 140–148 (2017)
2. Wang, X., Wang, J.T., Zhang, X., Song, J.: A multiple communication standards compatible IoT system for medical usage. In: IEEE Faible Tension FaibleConsommation (FTFC), Paris, pp. 1–4 (2013)
3. Yin, Y., Zeng, Y., Chen, X., Fan, Y.: The Internet of Things in healthcare: an overview. *J. Ind. Inf. Integr.* 1, 3–13 (2016)
4. Sarfraz Fayaz Khan, “Health Care Monitoring System in Internet of Things (IoT) by Using RFID”, IEEE International Conference on Industrial Technology and Management pp 198–204, 2017
5. Himadri Nath Saha, SupratimAuddy, Subrata Pal: Health Monitoring using Internet of Things (IoT), IEEE Journal pp.69–73, 2017
6. MoeenHassanalieragh; Alex Page ;TolgaSoyata; Gaurav Sharma, “Health Monitoring and Management Using Internet-of-Things (IoT)Sensing with Cloud-Based Processing: Opportunities and Challenges”, 2015
7. C. Bishop, Pattern recognition and machine learning. New York, NY:Springer, 2006.
8. Sandholm, T., Magnusson, B., Johnsson, B.A.: An on-demand WebRTC and IoT device tunneling service for

hospitals. In: International Conference on Future Internet of Things and Cloud, Barcelona, pp. 53–60 (2014)

9. Antonovici, D.A., Chiuchisan, I., Geman, O., Tomegea, A.: Acquisition and management of biomedical data using Internet of Things concepts. In: International Symposium on Fundamentals of Electrical Engineering, Bucharest, pp. 1–4 (2014)
10. Krishnan, B., Sai, S.S., Mohanthy, S.B.: Real time internet application with distributed flow environment for medical IoT. In: International Conference on Green Computing and Internet of Things, Noida, pp. 832–837 (2015).
11. V. G. Menon, “An IoT-enabled intelligent automobile system for smart cities,” *Internet of Things*, p. 100213, 2020.
12. Z. Ali, M. S. Hossain, G. Muhammad, and A. K. Sangaiah, “An intelligent healthcare system for detection and classification to discriminate vocal fold disorders,” *Future Generation Computer Systems*, vol. 85, pp. 19–28, 2018.
13. M. Khan, K. Han, and S. Karthik, “Designing smart control systems based on internet of things and big data analytics,” *Wireless Personal Communications*, vol. 99, no. 4, pp. 1683–1697, 2018.
14. V. Jagadeeswari, “A study on medical Internet of Things and Big Data in personalized healthcare system,” *Health Information Science And Systems*, vol. 6, p. 14, 2018.
15. H. Peng, Y. Tian, J. Kurths, L. Li, Y. Yang, and D. Wang, “Secure and energy-efficient data transmission system based on chaotic compressive sensing in body-to-body networks,” *IEEE Transactions on Biomedical Circuits and Systems*, vol. 11, no. 3, pp. 558–573, 2017.
16. L. M. Dang, M. J. Piran, D. Han, K. Min, and H. Moon, “A survey on internet of things and cloud computing for healthcare,” *Electronics*, vol. 8, no. 7, p. 768, 2019.
17. Nitesh Kumar, Laxman Sahoo, Ashish Kumar: Design and Implementation of Three Phase Commit Protocol (3PC) Algorithm, ICROIT-2014, IEEE International Conference (Conference Record Number: 32243), ISBN No. 978-1-4799-3958-9/14/\$1.00©2014 IEEE.
18. Nitesh Kumar, Laxman Sahoo, Saurabh Bilgaiyan: Enhanced Two Phase Commit Protocol: In Transaction Management, ICACCT-2013, IEEE/IETE 7th International Conference, ISBN: 978-93- 83083-38-1 Published in INDERSCIENCE (IJCAT) SCOPUS Journal Indexed.
19. Nitesh Kumar, Ashish Kumar, Soumyajit Giri: Design and Implementation of Three Phase Commit Protocol (3PC) Directory Structure through Remote Procedure Call (RPC) Application, ICICES-2014, IEEE 4th International Conference, ISBN No.978-1-4799-3834-6/14/\$1.00©2014 IEEE ISBN: 978-1- 4799-3835-3, DOI: 10.1109/ICICES.2014.7033930.
20. Nitesh Kumar, Ashish Kumar, Soumyajit Giri: Examined Three Phase Commit (3PC) Protocol for site N through Remote Procedure Call (RPC) Mechanism, I2CT-2014, IEEE's International Conference, ISBN No. 978-1-4799-3759-2/14/\$1.00©2014 IEEE.
21. Nitesh Kumar, Bratati Chakraborti, Ashish Kumar: Reduction of Cost by Implementing Transparency in Cloud Computing through Different Approaches, ICACCT-2014, 2014 IEEE International Conference on Advanced Communication Control and Computing Technologies, IEEE ISBN No. 978-1- 4799-3914-5/14/\$1.00©2014 IEEE, IEEE Catalogue No. 978-1-4799-3913-8 , Page(s):1723 - 1725 Print ISBN:978-1-4799-3913-8 , DOI:10.1109/ICACCT.2014.7019403.
22. Nitesh Kumar, Poornima Sharma, Nitin Anand, Jnyanaranjan Dash: Frame Encoding Technique by Different Stuffing Approaches, IEEE-International Conference on “2015 International Conference on Emerging Trends in Science, Engineering, Business and Disaster Management (ICBDM-2015)” Journal ETMS&E- ISSN No.: 0976-2558, Journal ETIP&N-ISSN No.: 0973-2993.
23. Nitin Anand, Nitesh Kumar, Jnyanaranjan Dash, Dipa Patra: Using ETL for Optimizing Business Intelligence Success in Multiple Investment Combinations, published in International Journal of Applied Engineering Research ISSN 0973-4562 Volume 10, Number 6 (2015) is indexed by SCOPUS. © Research India Publications :: http://www.rippublication.
24. S. Agarwal, A. P. Singh and N. Anand, "Evaluation performance study of Firefly algorithm, particle swarm optimization and artificial bee colony algorithm for non-linear mathematical optimization functions," 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India, 2013, pp. 1-8, <https://doi.org/10.1109/ICCCNT.2013.6726474>
25. Anand, N., Singh, K.J. (2024). A Comprehensive Study of DDoS Attack on Internet of Things Network. In: Swain, B.P., Dixit, U.S. (eds) Recent Advances in Electrical and Electronic Engineering. ICSTE 2023. Lecture Notes in Electrical Engineering, vol 1071. Springer, Singapore. https://doi.org/10.1007/978-981-99-4713-3_56
26. Anand, N., Singh, K.J. (2023). An Overview on Security and Privacy Concerns in IoT-Based Smart Environments. In: Rao, U.P., Alazab, M., Gohil, B.N., Chelliah, P.R. (eds) Security, Privacy and Data Analytics. ISPDA 2022. Lecture Notes in Electrical Engineering, vol 1049. Springer, Singapore. https://doi.org/10.1007/978-981-99-3569-7_21.
27. Anand, N., & Kumar, M. (2013). An overview on data quality issues at data staging etl. In Int. Conf. on Advances in Signal Processing and Communication.<https://doi.org/03.LSCS.2013.3.47>
28. N. Anand and M. Kumar, "Modeling and optimization of extraction-transformation-loading (ETL) processes in data warehouse: An overview," 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India, 2013, pp. 1-5, <https://doi.org/10.1109/ICCCNT.2013.6726592>